X
تبلیغات
پخش زنده جام جهانی

CUDA Programming Applications

فیلتر گابور

از آنجایی که خصوصیات مورد نظر در تصویر مقیاس ها و جهت های مختلفی دارند ،لذا استخراج اطلاعات و ویژگی های جهت دار در مقیاس های مختلف از تصویر یکی از گامهای اساسی می باشد امروزه فیلترهای گابور به علت خواص مناسبی که دارند برای رسیدن به این منظور به طور وسیع مورد استفاده قرار می گیرند. داگمن در سال 1980 با الهام از کار گابور روابط عدم قطعیت در دو بعد بیان و خانواده ای از توابع دو بعدی را که به مینیمم مقدار در اصل عدم قطعیت دست می یابند ، معرفی نمود و آنها را توابع گابور نامگذاری کرد.تابع گابور دو بعدی از حاصلضرب تابع گوسی دو بعدی در تابعی سینوسی در جهات مختلف فضای دو بعدی به دست می آید.این توابع به عنوان فیلتر بعلت خواص بسیار مفیدشان کاربرد زیادی را در زمینه های مختلف بینایی ماشین نظیر تحلیل بافت ،دسته بندی، بازیابی تصویر، تشخیص قلم پیدا کرده اند.از جمله این خواص می توان به سادگی ، تمرکز در حوزه مکان و فرکانس و امکان انتخاب جهت و فرکانس برای استخراج اطلاعات تصویر اشاره کرد.با استفاده از تبدیل موجک دو بعدی گابور می توان ویژگی های جهت دار تصویر را در مقیاس های مختلف استخراج نمود.مهمترین مزیت فیلترهای گابور،در تغییر ناپذیری آن نسبت به روشنایی ،چرخش ،مقیاس دهی و انتقال تصویر می باشد،بعلاوه اینکه این فیلتر می تواند در برابر اختلالات فتومتریکی (همچون تغییرات روشنایی و نویز واقع در تصویر)مقاومت نماید.در حوزه مختصات مکانی یک فیلتر گابور دو بعدی عبارت است از یک تابع کرنل گوسی (مدوله شده توسط یک موج مسطح سینوسی مختلط)که به صورت رابطه زیر می باشد

ورودی و خروجی فیلتر

نظرات (0)
امکان ثبت نظر جدید برای این مطلب وجود ندارد.